This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/tree/union-find-lowest-common-ancestor.hpp"
#include "../../structure/union-find/union-find.hpp"
#include "../graph-template.hpp"
/*
并查集:
遍历完结点 u 的子树后, 将 u 和其父亲所在集合进行合并.
遍历到结点 u 时, 对所有询问 u,v, 若 v 已经被遍历过, 则结 果为 v 所在集合深度最小的结点.
复杂度 O((n + q)α(n)).
离线做法
*/
template <typename T = int>
struct UnionFindLowestCommonAncestor : Graph<T> {
using Graph<T>::g;
using Graph<T>::Graph;
vector<int> build(vector<pair<int, int>> queries, int root = 0) {
int n = g.size();
vector<vector<pair<int, int>>> V(n);
for (int i = 0; i < queries.size(); i++) {
auto it = queries[i];
V[it.first].push_back({it.second, i});
V[it.second].push_back({it.first, i});
}
int m = queries.size();
vector<int> vis(n);
vector<int> ans(m);
UnionFind uf(n);
function<void(int, int)> dfs = [&](int u, int pre) {
vis[u] = 1;
for (auto it : V[u]) {
int v = it.first;
if (vis[v]) {
ans[it.second] = uf.find(v);
}
}
for (auto v : g[u]) {
if (v == pre) continue;
dfs(v, u);
}
if (pre != -1) {
uf.unite(u, pre);
}
};
dfs(root, -1);
return ans;
}
};
#line 2 "structure/union-find/union-find.hpp"
#include <bits/stdc++.h>
using namespace std;
struct UnionFind {
vector<int> data;
vector<int> f;
UnionFind() = default;
explicit UnionFind(size_t sz) : data(sz, 1), f(sz) {
iota(f.begin(), f.end(), 0);
}
bool unite(int x, int y) { // x merge to y
x = find(x), y = find(y);
if (x == y) return false;
data[y] += data[x];
f[x] = y;
return true;
}
int find(int x) {
if (f[x] == x) return x;
int y = find(f[x]);
data[y] += data[x];
f[x] = y;
return f[x];
}
int size(int x) {
return data[find(x)];
}
bool same(int x, int y) {
return find(x) == find(y);
}
vector<vector<int>> groups() {
int n = (int)data.size();
vector<vector<int>> ans(n);
for (int i = 0; i < n; i++) {
ans[find(i)].push_back(i);
}
ans.erase(remove_if(ans.begin(), ans.end(), [&](const vector<int>& v) {
return v.empty();
}),
ans.end());
return ans;
}
};
#line 3 "graph/graph-template.hpp"
using namespace std;
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
virtual void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
// virtual 可以被重载,实现多态
virtual void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 3 "graph/tree/union-find-lowest-common-ancestor.hpp"
/*
并查集:
遍历完结点 u 的子树后, 将 u 和其父亲所在集合进行合并.
遍历到结点 u 时, 对所有询问 u,v, 若 v 已经被遍历过, 则结 果为 v 所在集合深度最小的结点.
复杂度 O((n + q)α(n)).
离线做法
*/
template <typename T = int>
struct UnionFindLowestCommonAncestor : Graph<T> {
using Graph<T>::g;
using Graph<T>::Graph;
vector<int> build(vector<pair<int, int>> queries, int root = 0) {
int n = g.size();
vector<vector<pair<int, int>>> V(n);
for (int i = 0; i < queries.size(); i++) {
auto it = queries[i];
V[it.first].push_back({it.second, i});
V[it.second].push_back({it.first, i});
}
int m = queries.size();
vector<int> vis(n);
vector<int> ans(m);
UnionFind uf(n);
function<void(int, int)> dfs = [&](int u, int pre) {
vis[u] = 1;
for (auto it : V[u]) {
int v = it.first;
if (vis[v]) {
ans[it.second] = uf.find(v);
}
}
for (auto v : g[u]) {
if (v == pre) continue;
dfs(v, u);
}
if (pre != -1) {
uf.unite(u, pre);
}
};
dfs(root, -1);
return ans;
}
};