This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/tree/rmq-lowest-common-ancestor.hpp"
#include "../../structure/others/sparse-table.hpp"
#include "../graph-template.hpp"
/*
有点奇怪的写法,记录 dfs 时经过的每个点到 ord 里,维护每个点第一次在 ord 里的下标 in,求两个点的 lca 等价于ord 里 [in[a], in[b]] 中 dep 最小的那个点。感觉很合理。
*/
template <typename T = int>
struct RMQLowestCommonAncestor : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
using F = function<int(int, int)>;
void build(int root = 0) {
ord.reserve(g.size() * 2 - 1);
dep.reserve(g.size() * 2 - 1);
in.resize(g.size());
dfs(root, -1, 0);
vector<int> vs(g.size() * 2 - 1);
iota(begin(vs), end(vs), 0);
F f = [&](int a, int b) { return dep[a] < dep[b] ? a : b; };
st = get_sparse_table(vs, f);
}
int lca(int x, int y) const {
if (in[x] > in[y]) swap(x, y);
return x == y ? x : ord[st.fold(in[x], in[y])];
}
private:
vector<int> ord, dep, in;
SparseTable<int, F> st;
void dfs(int idx, int par, int d) {
in[idx] = (int)ord.size();
ord.emplace_back(idx);
dep.emplace_back(d);
for (auto &to : g[idx]) {
if (to != par) {
dfs(to, idx, d + 1);
ord.emplace_back(idx);
dep.emplace_back(d);
}
}
}
};
#line 1 "structure/others/sparse-table.hpp"
#include <bits/stdc++.h>
using namespace std;
/*
半群:若集合 S 和二元运算 op : S X S -> S 满足对任意 x, y, z \in S 都有 op(op(x, y), z) = op(x, (y, z)), 称 (S, op) 为半群
幂等半群的区间查询,
1. fold 查询 [l, r) 的值
需要补充一些二分函数,O(log) 找到值
*/
// using F = function<int(int, int)>
template <typename T, typename F>
struct SparseTable {
F f;
vector<vector<T> > st;
vector<int> lookup;
SparseTable() = default;
explicit SparseTable(const vector<T> &v, const F &f) : f(f) {
const int n = (int)v.size();
const int b = 32 - __builtin_clz(n);
st.assign(b, vector<T>(n));
for (int i = 0; i < v.size(); i++) {
st[0][i] = v[i];
}
for (int i = 1; i < b; i++) {
for (int j = 0; j + (1 << i) <= n; j++) {
st[i][j] = f(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
}
}
lookup.resize(v.size() + 1);
for (int i = 2; i < lookup.size(); i++) {
lookup[i] = lookup[i >> 1] + 1;
}
}
inline T fold(int l, int r) const {
int b = lookup[r - l];
return f(st[b][l], st[b][r - (1 << b)]);
}
};
template <typename T, typename F>
SparseTable<T, F> get_sparse_table(const vector<T> &v, const F &f) {
return SparseTable<T, F>(v, f);
}
#line 3 "graph/graph-template.hpp"
using namespace std;
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
virtual void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
// virtual 可以被重载,实现多态
virtual void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 3 "graph/tree/rmq-lowest-common-ancestor.hpp"
/*
有点奇怪的写法,记录 dfs 时经过的每个点到 ord 里,维护每个点第一次在 ord 里的下标 in,求两个点的 lca 等价于ord 里 [in[a], in[b]] 中 dep 最小的那个点。感觉很合理。
*/
template <typename T = int>
struct RMQLowestCommonAncestor : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
using F = function<int(int, int)>;
void build(int root = 0) {
ord.reserve(g.size() * 2 - 1);
dep.reserve(g.size() * 2 - 1);
in.resize(g.size());
dfs(root, -1, 0);
vector<int> vs(g.size() * 2 - 1);
iota(begin(vs), end(vs), 0);
F f = [&](int a, int b) { return dep[a] < dep[b] ? a : b; };
st = get_sparse_table(vs, f);
}
int lca(int x, int y) const {
if (in[x] > in[y]) swap(x, y);
return x == y ? x : ord[st.fold(in[x], in[y])];
}
private:
vector<int> ord, dep, in;
SparseTable<int, F> st;
void dfs(int idx, int par, int d) {
in[idx] = (int)ord.size();
ord.emplace_back(idx);
dep.emplace_back(d);
for (auto &to : g[idx]) {
if (to != par) {
dfs(to, idx, d + 1);
ord.emplace_back(idx);
dep.emplace_back(d);
}
}
}
};