This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/shortest-path/dijkstra.hpp"
#pragma once
#include "../graph-template.hpp"
template <typename T, typename T2 = long long>
struct ShortestPath {
vector<T> dist;
vector<int> from, to;
vector<T2> num;
};
template <typename T, typename T2 = long long>
ShortestPath<T, T2> dijkstra(const Graph<T> &g, int s) {
// O(mlogn)
const auto inf = numeric_limits<T>::max();
vector<T> dist(g.size(), inf);
vector<int> from(g.size(), -1), id(g.size(), -1);
vector<T2> cnt(g.size());
using Pi = pair<T, int>;
priority_queue<Pi, vector<Pi>, greater<> > Q;
dist[s] = 0;
cnt[s] = 1;
Q.emplace(dist[s], s);
while (!Q.empty()) {
T cost;
int u;
tie(cost, u) = Q.top();
Q.pop();
if (dist[u] < cost) { // 没有用 vis
continue;
}
for (auto &v : g[u]) {
auto w = cost + v.cost;
if (dist[v.to] > w) {
cnt[v.to] = cnt[u];
dist[v.to] = w;
from[v.to] = u;
id[v.to] = v.idx;
Q.emplace(dist[v.to], v.to);
} else if (dist[v.to] == w) {
cnt[v.to] += cnt[w];
}
}
}
return {dist, from, id, cnt};
}
template <typename T, typename T2 = long long>
ShortestPath<T, T2> normal_dijkstra(const Graph<T> &g, int s) {
// O(n^2)
int n = g.size();
const auto inf = numeric_limits<T>::max();
vector<T> dist(g.size(), inf);
vector<int> from(g.size(), -1), id(g.size(), -1);
vector<bool> vis(n);
vector<T2> cnt(g.size());
dist[s] = 0;
cnt[s] = 1;
for (int i = 0; i < n; i++) {
int x;
T m = inf;
for (int y = 0; y < n; y++) {
if (!vis[y] && dist[y] <= m) {
m = dist[x = y];
}
}
vis[x] = 1;
for (auto &e : g[x]) {
auto w = dist[x] + e.cost;
if (dist[e.to] > w) {
dist[e.to] = w;
from[e.to] = x;
id[e.to] = e.idx;
cnt[e.to] = cnt[x];
} else if (dist[e.to] == w) {
cnt[e.to] += cnt[x];
}
}
}
return {dist, from, id, cnt};
}
#line 2 "graph/graph-template.hpp"
#include <bits/stdc++.h>
using namespace std;
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
virtual void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
// virtual 可以被重载,实现多态
virtual void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 3 "graph/shortest-path/dijkstra.hpp"
template <typename T, typename T2 = long long>
struct ShortestPath {
vector<T> dist;
vector<int> from, to;
vector<T2> num;
};
template <typename T, typename T2 = long long>
ShortestPath<T, T2> dijkstra(const Graph<T> &g, int s) {
// O(mlogn)
const auto inf = numeric_limits<T>::max();
vector<T> dist(g.size(), inf);
vector<int> from(g.size(), -1), id(g.size(), -1);
vector<T2> cnt(g.size());
using Pi = pair<T, int>;
priority_queue<Pi, vector<Pi>, greater<> > Q;
dist[s] = 0;
cnt[s] = 1;
Q.emplace(dist[s], s);
while (!Q.empty()) {
T cost;
int u;
tie(cost, u) = Q.top();
Q.pop();
if (dist[u] < cost) { // 没有用 vis
continue;
}
for (auto &v : g[u]) {
auto w = cost + v.cost;
if (dist[v.to] > w) {
cnt[v.to] = cnt[u];
dist[v.to] = w;
from[v.to] = u;
id[v.to] = v.idx;
Q.emplace(dist[v.to], v.to);
} else if (dist[v.to] == w) {
cnt[v.to] += cnt[w];
}
}
}
return {dist, from, id, cnt};
}
template <typename T, typename T2 = long long>
ShortestPath<T, T2> normal_dijkstra(const Graph<T> &g, int s) {
// O(n^2)
int n = g.size();
const auto inf = numeric_limits<T>::max();
vector<T> dist(g.size(), inf);
vector<int> from(g.size(), -1), id(g.size(), -1);
vector<bool> vis(n);
vector<T2> cnt(g.size());
dist[s] = 0;
cnt[s] = 1;
for (int i = 0; i < n; i++) {
int x;
T m = inf;
for (int y = 0; y < n; y++) {
if (!vis[y] && dist[y] <= m) {
m = dist[x = y];
}
}
vis[x] = 1;
for (auto &e : g[x]) {
auto w = dist[x] + e.cost;
if (dist[e.to] > w) {
dist[e.to] = w;
from[e.to] = x;
id[e.to] = e.idx;
cnt[e.to] = cnt[x];
} else if (dist[e.to] == w) {
cnt[e.to] += cnt[x];
}
}
}
return {dist, from, id, cnt};
}