This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/connected-components/strongly-connected-components.hpp"
#pragma once
/*
Kosaraju 算法
复杂度 O(E + V)
强联通分量:一个强联通分量里的任意两个点两两互达
*/
#include "../graph-template.hpp"
template <typename T = int>
struct StronglyConnectedComponents : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
vector<int> comp; // comp[i] i 点在的组 id
Graph<T> dag; // 缩点后的图
vector<vector<int>> group; // group[i] 表示第 i 组有的点
void build() {
int n = g.size();
rg = Graph<T>(n);
for (int i = 0; i < n; i++) {
for (auto &e : g[i]) {
int u = e.from, v = e.to;
rg.add_directed_edge(v, u, e.cost);
}
}
used = vector<int>(n, 0);
comp = vector<int>(n, -1);
for (int i = 0; i < n; i++) {
if (used[i] == 0) {
dfs(i);
}
}
reverse(order.begin(), order.end());
int cnt = 0;
for (int i = 0; i < n; i++) {
int u = order[i];
if (comp[u] == -1) {
rdfs(u, cnt);
cnt++;
}
}
dag = Graph<T>(cnt);
group.resize(cnt);
for (int i = 0; i < n; i++) {
for (auto &e : g[i]) {
int u = comp[e.from], v = comp[e.to];
if (u == v) continue;
dag.add_directed_edge(u, v, e.cost);
}
group[comp[i]].push_back(i);
}
}
int operator[](int k) const {
return comp[k];
}
private:
vector<int> order, used;
Graph<T> rg;
void dfs(int idx) {
used[idx] = 1;
for (auto &e : g[idx]) {
int v = e.to;
if (used[v] == 0) {
dfs(v);
}
}
order.push_back(idx);
}
void rdfs(int idx, int cnt) {
comp[idx] = cnt;
for (auto &e : rg[idx]) {
int v = e.to;
if (comp[v] == -1) {
rdfs(v, cnt);
}
}
}
};
#line 2 "graph/connected-components/strongly-connected-components.hpp"
/*
Kosaraju 算法
复杂度 O(E + V)
强联通分量:一个强联通分量里的任意两个点两两互达
*/
#line 2 "graph/graph-template.hpp"
#include <bits/stdc++.h>
using namespace std;
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
virtual void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
// virtual 可以被重载,实现多态
virtual void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 10 "graph/connected-components/strongly-connected-components.hpp"
template <typename T = int>
struct StronglyConnectedComponents : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
vector<int> comp; // comp[i] i 点在的组 id
Graph<T> dag; // 缩点后的图
vector<vector<int>> group; // group[i] 表示第 i 组有的点
void build() {
int n = g.size();
rg = Graph<T>(n);
for (int i = 0; i < n; i++) {
for (auto &e : g[i]) {
int u = e.from, v = e.to;
rg.add_directed_edge(v, u, e.cost);
}
}
used = vector<int>(n, 0);
comp = vector<int>(n, -1);
for (int i = 0; i < n; i++) {
if (used[i] == 0) {
dfs(i);
}
}
reverse(order.begin(), order.end());
int cnt = 0;
for (int i = 0; i < n; i++) {
int u = order[i];
if (comp[u] == -1) {
rdfs(u, cnt);
cnt++;
}
}
dag = Graph<T>(cnt);
group.resize(cnt);
for (int i = 0; i < n; i++) {
for (auto &e : g[i]) {
int u = comp[e.from], v = comp[e.to];
if (u == v) continue;
dag.add_directed_edge(u, v, e.cost);
}
group[comp[i]].push_back(i);
}
}
int operator[](int k) const {
return comp[k];
}
private:
vector<int> order, used;
Graph<T> rg;
void dfs(int idx) {
used[idx] = 1;
for (auto &e : g[idx]) {
int v = e.to;
if (used[v] == 0) {
dfs(v);
}
}
order.push_back(idx);
}
void rdfs(int idx, int cnt) {
comp[idx] = cnt;
for (auto &e : rg[idx]) {
int v = e.to;
if (comp[v] == -1) {
rdfs(v, cnt);
}
}
}
};