This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/flow/dinic.hpp"
#include <bits/stdc++.h>
#include <limits>
using namespace std;
/*
Dinic 最大流
*/
template <typename flow_t>
struct Dinic {
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool is_rev;
int idx;
};
vector<vector<edge>> graph;
vector<int> min_cost, iter;
explicit Dinic(int V) : INF(numeric_limits<flow_t>::max()), graph(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
graph[from].emplace_back(edge{to, cap, (int)graph[to].size(), false, idx});
graph[to].emplace_back(edge{from, 0, (int)graph[from].size(), true, idx});
}
bool build_augment_path(int s, int t) {
min_cost.assign(graph.size(), -1);
queue<int> Q;
Q.push(s);
min_cost[s] = 0;
while (!Q.empty() && min_cost[t] == -1) {
int u = Q.front();
Q.pop();
for (auto &e : graph[u]) {
if (e.cap > 0 && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[u] + 1;
Q.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t find_min_dist_augment_path(int idx, const int t, flow_t flow) {
if (idx == t) return flow;
for (int &i = iter[idx]; i < (int)graph[idx].size(); i++) {
edge &e = graph[idx][i];
if (e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
flow_t d = find_min_dist_augment_path(e.to, t, min(flow, e.cap));
if (d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t flow = 0;
while (build_augment_path(s, t)) {
iter.assign(graph.size(), 0);
flow_t f;
while ((f = find_min_dist_augment_path(s, t, INF)) > 0) flow += f;
}
return flow;
}
vector<bool> min_cut(int s) {
vector<bool> used(graph.size());
queue<int> Q;
Q.push(s);
used[s] = true;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (auto &e : graph[u]) {
if (e.cap > 0 && !used[e.to]) {
used[e.to] = 1;
Q.push(e.to);
}
}
}
return used;
}
};
#line 1 "graph/flow/dinic.hpp"
#include <bits/stdc++.h>
#line 4 "graph/flow/dinic.hpp"
using namespace std;
/*
Dinic 最大流
*/
template <typename flow_t>
struct Dinic {
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool is_rev;
int idx;
};
vector<vector<edge>> graph;
vector<int> min_cost, iter;
explicit Dinic(int V) : INF(numeric_limits<flow_t>::max()), graph(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
graph[from].emplace_back(edge{to, cap, (int)graph[to].size(), false, idx});
graph[to].emplace_back(edge{from, 0, (int)graph[from].size(), true, idx});
}
bool build_augment_path(int s, int t) {
min_cost.assign(graph.size(), -1);
queue<int> Q;
Q.push(s);
min_cost[s] = 0;
while (!Q.empty() && min_cost[t] == -1) {
int u = Q.front();
Q.pop();
for (auto &e : graph[u]) {
if (e.cap > 0 && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[u] + 1;
Q.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t find_min_dist_augment_path(int idx, const int t, flow_t flow) {
if (idx == t) return flow;
for (int &i = iter[idx]; i < (int)graph[idx].size(); i++) {
edge &e = graph[idx][i];
if (e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
flow_t d = find_min_dist_augment_path(e.to, t, min(flow, e.cap));
if (d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t flow = 0;
while (build_augment_path(s, t)) {
iter.assign(graph.size(), 0);
flow_t f;
while ((f = find_min_dist_augment_path(s, t, INF)) > 0) flow += f;
}
return flow;
}
vector<bool> min_cut(int s) {
vector<bool> used(graph.size());
queue<int> Q;
Q.push(s);
used[s] = true;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (auto &e : graph[u]) {
if (e.cap > 0 && !used[e.to]) {
used[e.to] = 1;
Q.push(e.to);
}
}
}
return used;
}
};