This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/connected-components/incremental-bridge-connectivity.hpp"
/*
在线维护边双联通分量
https://scrapbox.io/data-structures/Incremental_Bridge-Connectivity
*/
#pragma once
#include "../../structure/union-find/union-find.hpp"
struct IncrementalBridgeConnectivity {
public:
IncrementalBridgeConnectivity() = default;
explicit IncrementalBridgeConnectivity(int sz) : cc(sz), bcc(sz), fa(sz, sz), bridge(0) {}
int find(int x) {
return bcc.find(x);
}
size_t bridge_size() const {
return bridge;
}
void add_edge(int x, int y) {
x = bcc.find(x), y = bcc.find(y);
if (cc.find(x) == cc.find(y)) {
int w = lca(x, y);
compress(x, w);
compress(y, w);
} else {
// 不在同一个强联通分量当中
if (cc.size(x) > cc.size(y)) swap(x, y);
link(x, y);
cc.unite(x, y);
bridge++;
}
}
private:
UnionFind cc, bcc; // cc 是否现在在同一个强联通分量中,bcc 是否在同一个边双联通分量重
vector<int> fa; // 根据边双联通分量缩点后 fa[i] i 点的父亲,如果 fa[i] = sz 则 i 没有父亲
size_t bridge; // 桥的个数
int size() {
return fa.size();
}
int par(int x) {
if (fa[x] == size()) return size(); // 没有父亲
return bcc.find(fa[x]);
}
int lca(int x, int y) {
// 相当于 x 往上走一步,y 往上走一步,记录路径经过的点,第一个被经过 2 次的点就是 lca
unordered_set<int> vis;
while (true) {
if (x != size()) { // 判断 x 是否是无效点
if (!vis.insert(x).second) return x; // second 返回一个 bool 值,表示是否插入成功,如果没成功,说明之前已经插入这个点
x = par(x);
}
swap(x, y);
}
}
void compress(int x, int y) {
while (bcc.find(x) != bcc.find(y)) {
int nxt = par(x);
fa[x] = fa[y];
bcc.unite(x, y);
x = nxt;
bridge--;
}
}
void link(int x, int y) {
int v = x, pre = y;
while (v != size()) {
int nxt = par(v);
fa[v] = pre;
pre = v;
v = nxt;
}
}
};
#line 1 "graph/connected-components/incremental-bridge-connectivity.hpp"
/*
在线维护边双联通分量
https://scrapbox.io/data-structures/Incremental_Bridge-Connectivity
*/
#line 2 "structure/union-find/union-find.hpp"
#include <bits/stdc++.h>
using namespace std;
struct UnionFind {
vector<int> data;
vector<int> f;
UnionFind() = default;
explicit UnionFind(size_t sz) : data(sz, 1), f(sz) {
iota(f.begin(), f.end(), 0);
}
bool unite(int x, int y) { // x merge to y
x = find(x), y = find(y);
if (x == y) return false;
data[y] += data[x];
f[x] = y;
return true;
}
int find(int x) {
if (f[x] == x) return x;
int y = find(f[x]);
data[y] += data[x];
f[x] = y;
return f[x];
}
int size(int x) {
return data[find(x)];
}
bool same(int x, int y) {
return find(x) == find(y);
}
vector<vector<int>> groups() {
int n = (int)data.size();
vector<vector<int>> ans(n);
for (int i = 0; i < n; i++) {
ans[find(i)].push_back(i);
}
ans.erase(remove_if(ans.begin(), ans.end(), [&](const vector<int>& v) {
return v.empty();
}),
ans.end());
return ans;
}
};
#line 7 "graph/connected-components/incremental-bridge-connectivity.hpp"
struct IncrementalBridgeConnectivity {
public:
IncrementalBridgeConnectivity() = default;
explicit IncrementalBridgeConnectivity(int sz) : cc(sz), bcc(sz), fa(sz, sz), bridge(0) {}
int find(int x) {
return bcc.find(x);
}
size_t bridge_size() const {
return bridge;
}
void add_edge(int x, int y) {
x = bcc.find(x), y = bcc.find(y);
if (cc.find(x) == cc.find(y)) {
int w = lca(x, y);
compress(x, w);
compress(y, w);
} else {
// 不在同一个强联通分量当中
if (cc.size(x) > cc.size(y)) swap(x, y);
link(x, y);
cc.unite(x, y);
bridge++;
}
}
private:
UnionFind cc, bcc; // cc 是否现在在同一个强联通分量中,bcc 是否在同一个边双联通分量重
vector<int> fa; // 根据边双联通分量缩点后 fa[i] i 点的父亲,如果 fa[i] = sz 则 i 没有父亲
size_t bridge; // 桥的个数
int size() {
return fa.size();
}
int par(int x) {
if (fa[x] == size()) return size(); // 没有父亲
return bcc.find(fa[x]);
}
int lca(int x, int y) {
// 相当于 x 往上走一步,y 往上走一步,记录路径经过的点,第一个被经过 2 次的点就是 lca
unordered_set<int> vis;
while (true) {
if (x != size()) { // 判断 x 是否是无效点
if (!vis.insert(x).second) return x; // second 返回一个 bool 值,表示是否插入成功,如果没成功,说明之前已经插入这个点
x = par(x);
}
swap(x, y);
}
}
void compress(int x, int y) {
while (bcc.find(x) != bcc.find(y)) {
int nxt = par(x);
fa[x] = fa[y];
bcc.unite(x, y);
x = nxt;
bridge--;
}
}
void link(int x, int y) {
int v = x, pre = y;
while (v != size()) {
int nxt = par(v);
fa[v] = pre;
pre = v;
v = nxt;
}
}
};